Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sema Öztürk,^a Mehmet Akkurt,^a* Nebahat Demirhan,^b Bahattin Kahveci,^c Hoong-Kun Fun^d and Nüket Öcal^b

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bChemistry Department, Faculty of Arts and Sciences, Yıldız Technical University, 34210 Esenler - Ístanbul, Turkey, ^cChemistry Department, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Tırabzon, Turkey, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (N–N) = 0.007 Å R factor = 0.051 wR factor = 0.110 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title molecule, $[Cu_2(H_2N_2O_2)_4(H_2O)_2]$, possesses a center of symmetry and contains two almost planar eight-membered central rings which are nearly normal to each other. Molecules are linked by $O-H\cdots O$ hydrogen bonds to form a three-dimensional network.

Tetra- μ -nitroaminato-bis[aquacopper(II)]

Received 11 June 2003 Accepted 12 June 2003 Online 10 July 2003

Comment

The primary aim of our work was to synthesize crystalline Cu^{II} complexes of 3-benzyl-4-(4-chlorophenylmethylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (L). L can be obtained from the reaction of 3-benzyl-4-amino-4,5-dihydro-1H-1,2,4triazol-5-ones with 4-chlorobenzaldehyde, according to a literature procedure (Kahveci & Íkizler, 2000). The title dinuclear pentacoordinated nitroamine-Cu^{II} complex, (I), was obtained in glacial acetic acid solution upon decomposition of L. Nitroamine complexes of Co^{II} have also been synthesized by methods described in the literature (Stepanyan et al., 2000). Nitroamine itself is the simplest model for a nitroamine energetic compound that can be used as an explosive, but research already performed has focused only on the monomer (Ju & Xiao, 2002; Hughes & Wimbledon, 1982). The title compound, (I), was identified by FT-IR spectroscopy and the X-ray structure determination undertaken.

The title molecule (which is shown in Fig. 1) contains two eight-membered rings, four NH₂ groups bonded to the N atoms of these rings [average N–N = 1.491 (7) Å; Table 1] and two water molecules attached Cu atoms [Cu–O = 2.159 (4) Å]. The bridging ligand is anionic, for charge balance. The two eight-membered rings in (I) are almost planar, with torsion angles of -3.0 (6) and 3.2 (6)° for Cu1–O1–N1–O2ⁱ and Cu1–O3–N3–O4ⁱ, respectively [symmetry code: (i) -x, 1 - y, 1 - z]. These rings are nearly normal to one another, with an N1–O1–Cu1–O3 torsion angle of 88.4 (4)°. In (I), the Cu1···Cu1ⁱ separation is

© 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved

An ORTEP-3 (Farrugia, 1997) plot of the title compound, with the atomnumbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. The unlabeled part of the molecule is related by the symmetry operation (-x, 1 - y, 1 - z).

2.6156 (9) Å. Centrosymmetric molecules are linked by O_{water} —H···O_{nitroamine} hydrogen bonds to form a threedimensional network (see Table 2 and Fig. 2). The NH₂ groups are not involved in hydrogen bonding.

Experimental

3-Benzyl-4-(4-chloromethylidenamino)-4,5-dihydro-1H,1,2,4-triazol-5-one (0.623 g, 2 mmol) was dissolved in absolute ethanol (50 ml) and CuCl₂·6H₂O (0.344 g, 2 mmol) in 50 ml of absolute ethanol was added. After addition of 0.05 N NaOH solution in ethanol to raise the pH to 8.0–8.5, the mixture was stirred at 338 K for 30 min on a water bath. A green–blue complex precipitated very rapidly. The solid was filtered, washed with absolute ethanol and dried with diethyl ether. IR (KBr): 3387, 3055, 1651, 1574, 1472, 1421, 1293, 1114, 834, 731 cm⁻¹. The Cu^{II} complex was soluble in hot glacial acetic acid and a green solution was obtained. A shiny green–blue crystalline complex was isolated after standing for two weeks at room temperature. The crystals were filtered and washed with ether. IR (KBr): 3489, 3387, 3285, 1625, 1472, 706, 731 cm⁻¹.

Crystal data

$[Cu_2(H_2N_2O_2)_4(H_2O)_2]$	$D_x = 1.952 \text{ Mg m}^{-3}$
$M_r = 409.26$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 2792
a = 13.1677 (18) Å	reflections
b = 8.5716 (12) Å	$\theta = 2.9-28.3^{\circ}$
c = 13.8499 (19) Å	$\mu = 3.12 \text{ mm}^{-1}$
$\beta = 117.024 \ (2)^{\circ}$	T = 293 K
$V = 1392.5 (3) \text{ Å}^3$	Slab, green-blue
Z = 4	$0.36 \times 0.28 \times 0.22 \text{ mm}$
Data collection	
Siemens SMART CCD area-	1624 independent reflections
detector diffractometer	1391 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.030$
Absorption correction: empirical	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -17 \rightarrow 17$
$T_{\min} = 0.400, \ T_{\max} = 0.547$	$k = -11 \rightarrow 11$
3874 measured reflections	$l = -14 \rightarrow 18$

Figure 2

A view of the crystal packing in the unit cell, with hydrogen bonds shown as dashed lines.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0377P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.051$	+ 5.3609P]
$wR(F^2) = 0.110$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.29	$(\Delta/\sigma)_{\rm max} < 0.001$
1624 reflections	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
100 parameters	$\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL9
independent and constrained	Extinction coefficient: 0.0022 (5)
refinement	

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.954 (4)	O2-N1 ⁱ	1.271 (6)
Cu1-O2	1.946 (4)	O3-N3	1.258 (5)
Cu1-O3	1.983 (3)	O4–N3 ⁱ	1.265 (5)
Cu1-O4	1.995 (3)	1.995 (3) N1-N2	
Cu1-O5	2.159 (4)	N3-N4	1.477 (6)
O1-N1	1.243 (6)		
O1-Cu1-O2	168.72 (17)	Cu1-O1-N1	125.0 (4)
O1-Cu1-O3	90.88 (15)	Cu1-O2-N1 ⁱ	120.8 (3)
O1-Cu1-O4	89.43 (15)	Cu1-O3-N3	121.8 (3)
O1-Cu1-O5	93.68 (17)	Cu1-O4-N3 ⁱ	125.5 (2)
O2-Cu1-O3	87.48 (15)	$O2^i - N1 - N2$	116.0 (4)
O2-Cu1-O4	89.99 (15)	$O1 - N1 - O2^{i}$	125.4 (5)
O2-Cu1-O5	97.60 (16)	O1-N1-N2	118.6 (4)
O3-Cu1-O4	168.61 (12)	O3-N3-O4 ⁱ	123.8 (4)
O3-Cu1-O5	98.02 (14)	O4 ⁱ -N3-N4	117.4 (4)
O4-Cu1-O5	93.33 (14)	O3-N3-N4	118.8 (4)
O3-Cu1-O1-N1	88.4 (4)	$Cu1 - O1 - N1 - O2^{i}$	-3.0(6)
O5-Cu1-O1-N1	-173.5(4)	Cu1-O2-N1 ⁱ -N2 ⁱ	177.9 (3)
O5-Cu1-O2-N1 ⁱ	175.8 (3)	Cu1-O3-N3-N4	-177.4 (3)
O5-Cu1-O3-N3	-176.4(3)	Cu1-O3-N3-O4 ⁱ	3.2 (6)
O5-Cu1-O4-N3 ⁱ	172.0 (4)	Cu1-O4-N3 ⁱ -N4 ⁱ	-174.8 (3)
Cu1-O1-N1-N2	176.5 (3)		

Symmetry code: (i) -x, 1 - y, 1 - z.

Table 2Hydrogen-bonding geometry (Å, °).

<i>D</i> -H··· <i>A</i>	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O5-H50\cdots O3^{ii}$	0.80 (7)	2.13 (7)	2.928 (5)	174 (6)
$O5-H51\cdots O4^{iii}$	0.72 (5)	2.12 (5)	2.828 (5)	167 (6)

Symmetry codes: (ii) $\frac{1}{2} - x, \frac{3}{2} - y, 1 - z$; (iii) $-x, y, \frac{1}{2} - z$.

All H atoms bonded to N atoms were placed in calculated positions, with N—H distances of 0.86 Å, and included in the refinement in the riding-model approximation, with $U_{\rm iso}$ values equal to $1.2U_{\rm eq}$ of the carrier atom. The H atoms of the water molecules were found in a difference Fourier map and refined independently, with isotropic displacement parameters.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine

structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *PARST* (Nardelli, 1995) and *WinGX* publication routines (Farrugia, 1999).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hughes, M. N. & Wimbledon, P. E. (1982). Inorg. Chim. Acta, 65, 129-130.
- Ju, X. H. & Xiao, H. M. (2002). Chin. J. Chem. 20, 227-234.
- Kahveci, B. & Íkizler, A. A. (2000). Turk. J. Chem. 24, 343–351.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). *SMART* and *SAINT*. Versions 4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stepanyan, T. G., Akopyan, M. E. & Kurtikyan, T. S. (2000). Russ. J. Coord. Chem. 26, 425–428.